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ABSTRACT

Soil quality models developed for ecodistrict polygons (EDP) and the polygons of the soil landscapes of
Canada (SLC) to monitor the concentration of soil organic matter require daily climate data as an important
input. The objectives of this paper are (i) to provide a method that interpolates the daily station data onto the
894 SLC polygons and 150 EDP in the province of Alberta, Canada, so that the interpolated data fit not only
climate mean but also climate variability, especially for the precipitation field, and hence can be used as realistic
climate input to soil quality models and (ii) to understand the variability of the Alberta daily climate, such as
precipitation frequency. The procedure interpolates the station data onto a dense network of grid points and then
averages the gridpoint values inside polygons. The procedure and results for maximum temperature, minimum
temperature, and precipitation are reported in detail. The interpolation uses the observed daily data for the period
1 January 1961–31 December 1997 (13 514 days) within the latitude–longitude box (458–648N, 1168–1248W).
Because the precipitation field can have a short spatial correlation length scale and large variability, a hybrid
of the methods of inverse-distance weight and nearest-station assignment is developed for interpolating the
precipitation data. This method can reliably calculate not only the number of precipitation days per month, but
also the precipitation amount for a day. The temperature field has a long spatial correlation scale, and its data
are interpolated by the inverse-distance-weight method. Cross-validation shows that the interpolated results on
polygons are accurate and appropriate for soil quality models. The computing algorithm uses all the daily observed
climate data; despite that, some stations have a very short time record or only summer records.

1. Introduction

Agricultural use of climate data has increased con-
siderably during the last two decades because of the
rapid development of information technology, and the
rate of the increase will accelerate in the future (Chang-
non and Kunkel 1999). This paper reports the inter-
polation methods used to provide the daily climatic in-
put data required by soil quality models in Alberta, Can-
ada.

Alberta extends from 498 to 608N latitude and from
1108 to 1208W longitude. Agriculture is found through-
out the province, extending over 1000 km from the 49th
parallel, where it is the most prominent industry, to the
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Peace River region in the northwest. The total land area
of Alberta is 63.8 million hectares (or 0.638 million
square kilometers), of which about one-third, 20.8 mil-
lion hectares, is occupied farm land.

Alberta Agriculture, Food and Rural Development
(AAFRD), a provincial government department, in part-
nership with the agricultural industry, has been devel-
oping a strategy for sustainable agriculture. Government
agencies are becoming more aware of the need to be
accountable and are trying to include specific measur-
able results in business plans. AAFRD is committed to
environmental sustainability and is working with re-
searchers to develop quantitative measures. Soil quality
is one of the initial indicators of environmental sus-
tainability being developed. One aspect of sustainability
is to ensure land management practices maintain or im-
prove soil quality.

Soil organic matter is one of the key soil attributes
associated with soil quality. Soils with higher levels of



DECEMBER 2001 2163S H E N E T A L .

FIG. 1. The 150 EDPs in Alberta.

organic matter are generally considered to be of better
quality and tend to have (i) better nutrient-retention
characteristics for good crop growth; (ii) better water
infiltration rates, resulting in slower rates of water ero-
sion of soil; and (iii) better structure, reducing suscep-
tibility to wind erosion.

Several models are being used by AAFRD to assess
soil quality in Alberta. Among them are EPIC (Erosion/
Productivity Impact Calculator) and WEPP (Water Ero-
sion Prediction Project). The EPIC model was devel-
oped to assess the effect of soil erosion on soil pro-
ductivity (Sharpley and Williams 1990). EPIC operates
in a daily time step and requires daily climate data (ra-
diation, maximum and minimum temperature (Tmax and
Tmin), precipitation, relative humidity, and wind speed)
and information on land-management practices. The
WEPP model, also operating in daily time step, simulates
the soil water content in multiple layers of soil relevant
to plant growth and/or decomposition. It also simulates
the effects of tillage processes and soil consolidation
(Flanagan and Livingston 1995). These soil quality mod-
els apply current knowledge of crop growth and soil
processes, which are influenced by climate conditions, to
assess the effect of changes in land management prac-
tices, such as adoption of reduced tillage and annual crop-
ping or perennial cover, on soil organic matter.

Alberta is developing a method to monitor changes
in soil quality by using models on a provincewide scale
verified by research plot data. In order to operate, most
models require a complete daily climate dataset as input,
with no missing data. The models quantitatively esti-
mate the effect on soil quality due to changes in land
management practices under the climate conditions used
in the models. It is very important to have actual ob-
served daily climate data on which to run the models,
to compare the model results with carefully measured
soil data. In a similar way, it is important to have daily
climate data for operational use of the models to quan-
titatively estimate changes in soil organic matter. The
daily data must adequately represent the actual weather
conditions that occurred. Soil-erosion research has
shown that severe weather events, especially heavy rain-
falls or high winds, are primarily responsible for the
bulk of soil erosion, which reduces soil quality.

The soil quality models are being developed in Al-
berta to run on Ecodistrict polygons (EDP) and Soil
Landscapes of Canada (SLC) polygons. These polygons
represent sufficiently uniform soil and climate condi-
tions, suitable for provincewide land capability assess-
ment and for the soil quality monitoring intended. The
province is divided into 150 EDP (Fig. 1; Ecological
Stratification Working Group 1995) and 894 SLC poly-
gons (Fig. 2; Shields et al. 1991). There is a mismatch
between the climate data available, which have been
recorded at points, and the data needed for polygons. It
is not clear how a climate parameter for a polygon would
be directly measured.

We define the climate value for a polygon as the

spatial average of the climate parameter. Therefore the
polygon climate value is an estimated value. Interpo-
lation and averaging are essential tools to obtain that
estimate with minimal error.

Various methods may be used to interpolate scattered
data onto polygons, such as the Thiessen polygon meth-
od. We chose to interpolate all the available station data
onto a regular grid with 10-km spacing and average the
values for the grid points inside a polygon. In our current
study, the 10-km spacing was chosen as well-suited to
the size of the polygons and the station density in Al-
berta. The grid was not so dense as to cause excessive
computation. This station-to-grid-to-polygon approach
was successfully used earlier by Mackey et al. (1996)
to recharacterize climate subregions in the province of
Ontario, Canada, and was reviewed by Shen (1998).

Many methods are available to interpolate data onto
grid points, such as nearest-station assignment, inverse-
distance weighting, kriging, and thin-plate splines. Most
of the interpolation methods are best for fitting the mean
for a period of a month or longer. However, soil erosion
is mostly influenced by extreme weather events, such
as heavy precipitation or high winds. Thus, the input
data to the soil quality models must adequately represent
the real sequence of weather events in the recorded data.
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FIG. 2. The 894 SLC polygons in Alberta.

According to Karl and Knight (1998), the increase of
precipitation in the United States and Canada over the
last 90 years is mainly due to extreme precipitation
events. Thus, it is important for the interpolated data to
retain the heavy precipitation events.

Preliminary investigation showed that although some
interpolation methods provide good estimates of the
monthly mean precipitation, they also result in too many
days with precipitation and therefore too little precipi-
tation each day. This attribute of interpolation, if left
uncorrected, would lead to underestimation of precipi-
tation intensity and hence soil erosion.

Among the commonly used interpolation methods,
the nearest-station-assignment method yields a good es-
timate of variance. In order to have a good assessment
of climate variability, when Agriculture Canada calcu-
lated the ecodistrict climate normals for 1961–90, it used
the Thiessen polygon approach for interpolation, which
is equivalent to the nearest-station assignment method.
The details can be found from the following Web site:
http://res.agr.ca/CANSIS/NSDB/ECOSTRAT/cli-
matepnormalsp1961-91.html.

The main objective of this paper is to describe a meth-

od that interpolates the daily station data onto polygons
so that the interpolated data fit not only the monthly
mean but also retain the appropriate number of days
with precipitation and hence provide more realistic and
complete (no missing data) daily climate input for use
by soil quality models in Alberta.

The interpolation methods must satisfy the soil qual-
ity monitoring project needs, which are (i) to provide
the best fit for both the monthly mean and the days with
precipitation, (ii) to dynamically adapt to the number
of stations to use all the daily data available, and (iii)
to provide realistic and complete (no gaps in the dataset)
daily input data for polygons to be used in soil quality
models.

Our method for precipitation is a hybrid of inverse-
distance weighting and nearest-station assignment. To
achieve the best fit, we use all the daily observed climate
data available for the period 1 January 1961 to 31 De-
cember 1997. Even stations are used that have a very
short record, some with as little as two months of data.
To overcome the technical difficulty of interpolating
data with varying and incomplete data sources, a dy-
namic searching algorithm is developed in this research.

The accuracy of interpolation is assessed by cross-
validation for both observed stations and polygons. The
cross-validation results show that our method is reliable
and appropriate for preparing realistic daily weather data
for use in soil quality models.

This paper is arranged as follows. Section 2 describes
the data source used for interpolation. Section 3 de-
scribes our interpolation method. Section 4 describes
the assessment of the interpolation error by cross-val-
idation. Conclusions and discussion are in section 5.

2. Data

The basic daily climate data needed for soil quality
models are the following seven parameters: maximum
and minimum temperature, precipitation, wind speed,
wind direction, relative humidity, and incoming solar
radiation. This paper reports the details only on the in-
terpolation procedures and results for temperature and
precipitation. The wind, humidity, and radiation data
are only discussed briefly in various places of the paper,
because there are only a few stations with these quan-
tities.

Daily weather conditions are observed at stations dis-
tributed in a variety of networks throughout Alberta and
its vicinity. Each of the networks serves a different pur-
pose. Environment Canada operates a network of about
30 stations that support the real-time, synoptic-scale
weather forecasting activities by providing hourly and
daily observations via telecommunications. Environ-
ment Canada also operates a network of about 200 sta-
tions that record twice-daily readings of temperature and
precipitation for characterizing the climate. Alberta En-
vironment operates, during the summer months only, a
network of about 100 stations that record the daily cli-
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FIG. 3. Locations of the 927 temperature and precipitation stations
(1961–90) in Alberta.

TABLE 1. The Tmax, Tmin, and Pcpn observational station summary.

1961–90 1991–97

927
268
135

37
3

507
452

47
25
15

Alberta stations
U.S. stations
Saskatchewan stations
British Columbia stations
Northwest Territories stations

Total 1370 1046 Stations

mate data to support forest-fire protection activities.
When the physical condition of a station, most often the
location, was changed, the station identification (ID)
was changed accordingly. We counted the number of
stations according to the station ID. Thus, it can happen
that one station name, such as Edmonton, corresponded
to several station IDs and hence several stations. Figure
3 shows the locations of these 927 climate stations in
Alberta from 1 January 1961 to 31 December 1990.

Large differences exist in station density across Al-
berta as well as in data availability from the stations.
The southern, more populated, and also more agricul-
turally intensive area has greater station density than the
northern portion, which is mostly forested but also has
agricultural activity. Most stations measure only daily
precipitation and the daily maximum and minimum tem-
perature. The synoptic stations usually record relative
humidity, wind speed, and wind direction. Only a few
stations in Alberta record solar radiation. A summary
of the archived data inventory for temperature and pre-
cipitation is given in Table 1. The data were accessed
in two phases. The first phase was for 1961–90 in order
to match the period of climate normals. The second
phase was to update the daily dataset to include the most
recent data available.

Alberta is contained in the latitude–longitude box

498–608N, 1108–1208W with the southwest corner cut
off by the Rocky Mountains. The climate stations within
Alberta, and those outside the borders of the province,
but within a box 48 longitude to the east and west, and
48 latitude to the north and south, were used for inter-
polation. Thus, our data were from the stations inside
the latitude–longitude box 458–648N, 1168–1248W.

Daily climate data were purchased from the Atmo-
spheric Environment Service (AES) in Canada, and the
National Oceanic and Atmospheric Administration
(NOAA) in the United States. All the available daily
data, except apparently incorrect data, were used for
interpolation. The data had gone through quality control
at both AES and NOAA, but some unusual data still
existed. Additional quality control tests were used to
eliminate some apparently incorrect data, such as re-
cords with maximum temperature less than minimum
temperature, temperature greater than 458C and less than
2708C, daily precipitation greater than 250 mm, daily
radiation greater than 50 MJ m22, wind speed greater
than 150 km h21 and wind direction greater than 3608.

Most of the stations had incomplete data records,
varying from some having a few missing days, to some
having only a few months of data. A complete dataset
would be the number of stations multiplied by the num-
ber of days, which we call the station-days. For the
climatological period 1961–90, of the total possible sta-
tion-days, only 32% had data for temperature, and 39%
had data for precipitation.

3. Interpolation method

a. Review of conventional interpolation methods

Interpolation belongs to a very useful branch of math-
ematics, called approximation theory. Statistical inter-
polation considers fields having random fluctuations.
Various interpolation methods have been invented to
solve interpolation problems in practical applications.
Many traditional interpolation methods are summarized
in a comprehensive book by Cressie (1993).

Commonly used interpolation methods for meteoro-
logical applications include nearest-station assignment,
inverse-distance weighting, inverse-distance-square
weighting, Thiessen-polygon method, orthogonal-poly-
nomial approximation, Lagrange method, interpolation
by splines, kriging, and interpolation by empirical or-
thogonal functions. Each method has its merits and is
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applicable according to temporal length scale, spatial
length scale, stationarity, and variability of the field un-
der consideration. In the following, a few relevant meth-
ods are briefly reviewed and assessed for their suitability
for processing a long time series (37 yr) of daily climate
data for use by soil quality models.

1) Trivariate thin-plate-spline smoothing (Hutchinson
1995, 1998a,b): the spline interpolation of scattered
data is to construct a thin plate that fits a field with
minimum mean-square error and satisfies the con-
straint of continuous curvature. At the three-dimen-
sional data points (xi, yi, zi), the functional values of
the thin plate are usually not equal to the observed
data f(xi, yi, zi). The thin-plate-spline smoothing em-
phasizes the global shape of a field. Mathematically,
the thin-plate-spline algorithm minimizes the mean-
square error under the constraint of smooth curva-
ture. The constraint is integrated into the cost func-
tional by a Lagrange multiplier. Hutchinson (1995,
1998a,b, and references therein) has extensively ex-
plored meteorological applications of the method and
used it to interpolate both daily and monthly rainfall
fields. After a square root transformation of the pre-
cipitation data, the skewly distributed rainfall data
became more normally distributed. He then inter-
polated the square root of the rainfall data and ob-
tained a rainfall interpolation result with a small root-
mean-square error (rmse).

Bivariate (x, y) thin-plate-spline smoothing always
results in a very smooth field, whose spatial variance
is often too small to be realistic. Hutchison (1998b,
and in his earlier work) noticed that it was important
to include elevation z as an additional independent
variable. He applied the trivariate thin-plate-spline
method to various climate data (Hutchinson 1998b;
Price et al. 2000). The gradients of the climate fields
due to topographic variation were successfully re-
covered.

Because the resulting field, even with the trivariate
thin-plate-spline interpolation, is still very smooth
over a flat region, the method is well suited for large-
scale rainfalls, such as the daily rainfall in Southeast
Asia during the monsoon season, or monthly and
annual precipitation in most places of the world.
Over the plains area, the elevation variable plays a
very small role, and the smoothness implies smaller
variance of the fitted field in comparison with the
true one. Consequently, the small-scale storms are
smeared, and thus it is to be investigated whether
the method can be improved to accurately interpolate
the highly localized, summer-convective storms (in
daily time scale) in plains areas like the Canadian
prairies. In conclusion, this method is most suited to
interpolate a climate field of large spatial scales or
over a mountainous region. Alberta’s relatively flat,
agricultural area has highly localized, convective
precipitation during the summer, which is the ‘‘wet’’

season, when about 60% of the annual total precip-
itation falls in 4 months.

2) Gradient plus inverse-distance-squared (Price et al.
2000; Nadler and Wein 1998): To interpolate climate
data [V(xi, yi, zi), i 5 1, 2, . . . , N] onto points (xp,
yp), one first takes the first-order Taylor expansion,

V̂ 5 V(x , y , z )p i i i

1 =V(x , y , z ) · (x 2 x , y 2 y , z 2 z ). (1)i i i p i p i p i

Here (xi, yi, zi) are the local orthogonal coordinates
and zi is elevation. The gradient =V(xi, yi, zi) is ap-
proximated by linear regression coefficients. The ac-
curacy of this linear approximation is assumed to be
weighted by inverse-distance square ( ). Accord-22dip

ing to Price et al. (2000), although the result of this
method is comparable to that of the thin-plate spline
when applied to monthly data over a region where
both topographic and climatic gradients are small,
the trivariate thin-plate-spline smoothing systemat-
ically outperforms it. Hence, the method works well
in Ontario, Quebec, Manitoba, Saskatchewan, and
the agricultural areas of Alberta, but the thin-plate-
spline smoothing clearly produced better results over
British Columbia and the mountain areas of Alberta.
The requirement of the stationarity of the regression
coefficients, which approximate the climatic gradi-
ent, makes it difficult for the method to be applied
to daily precipitation data, which often have a large
gradient in the summer.

3) Precipitation–elevation regressions on independent
slopes model (PRISM; Daly et al. 1994): PRISM
considers (i) the relationship between precipitation
and elevation via a digital elevation model, (ii) the
spatial scale of orographic effects, and (iii) the to-
pographic characteristics of orographic regimes. The
method is regarded as a useful approach for inter-
polating the monthly precipitation field in a mountain
region. However, the factors (i) and (ii) are difficult
to assess quantitatively, when a precipitation field is
not stationary. Hence, the method’s application to
daily data is limited.

4) Inverse-distance weighting (Jones et al. 1986): In
their milestone paper, Jones et al. (1986) systemat-
ically interpolated the global station data onto 58 3
58 grid points for the first time. Their method was
the inverse-distance weighting. Despite further de-
velopment of various types of interpolation methods
in the last 14 yr, this seemingly crude method yielded
a reliable result in terms of mean temperature. How-
ever, the resultant field is still too smooth and the
variance at many grid points is too small.

5) Kriging (Hudson and Wachkernagel 1994; Cressie
1993): Kriging is a commonly used method in ge-
ology. It minimizes the mean-square error between
the estimated field and the true field, when the co-
variance field is known. The covariance field is de-
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scribed by a variogram, which has three parameters
to be fitted: variance, spatial length scale, and cor-
relation between two points of a large distance. Re-
cently, Hudson and Wachkernagel (1994) modified
the method by explicitly including the elevation fac-
tor and applied the modified method to the January
temperature in Scotland. Cross-validation shows that
the correlation between the kriged data and the true
data is around 0.9. However, kriging requires a field
to be relatively stationary in time and homogeneous
in space. These requirements make it a poor choice
to apply to daily climatic data, particularly precipi-
tation. This was also pointed out by Daly et al.
(1994).

6) Empirical orthogonal function method (Smith et al.
1998): Empirical orthogonal functions (EOF) are the
eigenfunctions of the covariance function of a field.
They can reflect inhomogeneous properties such as
teleconnections. It has been shown that EOF has be-
come the most effective tool in dealing with spatially
inhomogeneous climate fields. Smith et al. (1998)
used EOFs to interpolate the monthly sea surface
temperature data over the tropical Pacific. They
trained the EOFs by using the observed data from
1982 to 1995. The trained EOFs were then used for
interpolation by minimizing the mean-square error.
Thus, the EOF approach is a kriging for an inho-
mogeneous climate field. This method, however, may
yield unreasonable results when the field is highly
nonstationary, since there is no data to train the
EOFs, which, by definition, are stationary. The daily
climate data field is often highly nonstationary, and
hence the EOF approach is not suitable for process-
ing daily data.

In summary, most optimization methods are best for
fitting mean conditions; the resulting fields are too
smooth and do not adequately preserve the number of
days with precipitation in a month or a year. Normally,
an optimization method requires estimating parameters
that are often assumed to be stationary. The nonsta-
tionary daily data often do not produce a robust estimate
of parameters. For example, the covariance structure,
required for kriging algorithms, for daily data is usually
nonstationary and is hard to assess accurately. Simple
interpolation methods, such as the nearest-station as-
signment, although not optimized, can often retain the
variability of daily data. Retaining variance of climate
fields is essential when putting climate data into soil
quality models, particularly the erosion models. On the
other hand, if the monthly or annual data are processed,
the optimization methods are more accurate since the
monthly and annual climate fields are close to being
stationary. In this paper, a hybrid interpolation method
is described that incorporates the nearest-station-assign-
ment and inverse-distance-weighting methods.

b. The method of nearest-station assignment

To obtain the spatial average values of a climatic
quantity over each polygon, a regular 10 km 3 10 km
grid was used to cover Alberta. Each grid point was
assigned the observed value of the nearest station that
had data for the day. The arithmetic average of the cli-
mate parameter values of all the grid points inside the
polygon was the daily value of the climate parameter
for the polygon. Thus, the method is called the ‘‘nearest-
station assignment.’’

In general, a polygon had at least one grid point. Some
small polygons had no regular grid points; thus the poly-
gon centroid was selected as an additional interpolation
(grid) point. Because the polygon was small when com-
pared with the length scales of temperature and precip-
itation, this centroid represented the climate conditions
over the entire small polygon, much as a station located
there would do so. Two EDP and 116 SLC polygons
have no regular grid points. Their centroids were used
as the interpolation (grid) points. With the regular grid
points and the centroids of the small polygons, the num-
ber of interpolation points was 6633 for EDPs and 6746
for SLCs over the entire area of Alberta. For any given
day, every polygon could acquire its interpolated values
of climate parameters by the nearest-station-assignment
method.

This method assigns to a grid point the observed cli-
mate data directly from the nearest station. It should not
yield a large bias when the observational stations are
sufficiently dense. However, this method is by no means
optimal since no computational optimization is imple-
mented. When the observational stations are very sparse
and the climate conditions are complex, this method will
result in substantial spatial errors for a climate parameter
that varies over short length scales.

Since the desired result is the spatial average of a
parameter for a polygon, rather than the gridpoint val-
ues, this interpolation should be related to averaging.
An averaging method used in geography is the Thiessen
polygon approach, which considers only a station’s rep-
resentative area determined by the bisectors between
each pair of stations. The implicit assumption is that the
length scale of the observing network and the climate
parameter are similar and interchangeable. This spatial
averaging method is, in fact, equivalent to our inter-
polation from station data to polygon grid points, which
uses the method of nearest-station assignment.

Canadian ecodistrict climate normals for 1961–90
prepared by Agriculture Canada were developed by us-
ing the Thiessen polygon method. More information is
available on the Web site given in section 1. The nearest-
station-assignment method is the same as the Thiessen
polygon method, but the computing for the nearest-sta-
tion-assignment method is much simpler than that of
the Thiessen polygon method for daily data.

The procedure for the Thiessen polygon method is as
follows. For a given day, one identifies all the stations
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that have data. With these stations, Thiessen polygons
are drawn to cover Alberta, a procedure requiring a great
amount of computing work.

The equivalence between the nearest-station-assign-
ment method and the Thiessen polygon method can be
shown as follows. The EDP B intersects with MB Thies-
sen polygons PBi (i 5 1, 2, . . . , MB). The temperature
over the EDP B is then determined by these MB stations
and their Thiessen polygons by the formula

MB1
T 5 w T , (2)OB Bi Bi|B| i51

where | B | is the area of the EDP B, and wBi is the area
of the intersection of B and the Thiessen polygon PBi.
When using the grid points, the above formula can be
approximated by

MB1
T 5 N T , (3)OB Bi BiN i51B

where NB is the total number of grid points inside the
EDP polygon B, and NBi is the number of grid points
inside the intersection of B and the Thiessen polygon
PBi. The accuracy of this approximation is proportional
to the density of the grid points and also depends on
the spatial length scales of the interpolated parameters.
For the daily temperature and precipitation under our
consideration and the 10 km 3 10 km grid, the above
two formulas approximate each other extremely well.
The approximation may be incorrect for only some very
small scale storms.

Three aspects of interpolation require discussion: the
error, the variance of the results, and the computing
algorithm. The first aspect is that the nearest-station-
assignment method may contain some sizable errors, yet
it does not generate a large estimation bias. If the station
density is high, this method can obviously yield very
accurate results.

The second aspect is variance. Since the nearest-sta-
tion method uses only one station’s data for a grid for
a given day, the interpolated grid should adequately
preserve the variance of a single point, although the
nearest station may change from day to day. The inter-
polation to a grid point from every other method is a
linear combination of the data from several stations. It
is well known that a linear combination of data reduces
variance, particularly the variance that measures noise.

The third aspect is the algorithm of finding the nearest
stations every day. When considering regional clima-
tology, researchers generally believe that the climate
parameter over a polygon is represented by nearby sta-
tions. All the stations within and adjacent to each poly-
gon should be identified. The nearest stations can be
found in many ways, such as by the use of moving
circular or rectangular windows (Isaacs and Srivastava
1989). After many computing experiments, we selected
the following searching strategy. Each EDP has maxi-
mum and minimum latitude and longitude values that

define a rectangle that encloses the polygon. An expan-
sion of the rectangle on each side by 1.88 (about 200
km) in the north–south direction and 3.48 (also about
200 km) in the east–west direction forms a larger rect-
angle. This 200 km is the spatial length scale for the
temperature field (Hansen and Lebedeff 1987). Thus,
the values 1.8 and 3.4 are chosen to make the extensions
in the north–south and east–west directions have about
the same spatial length. The stations contained inside
this larger rectangle are regarded as the subset of nearby
stations for the polygon. The distances from each grid
point inside the polygon to the stations inside the ex-
panded rectangle are computed, and the results form a
distance table. The distance sorting finally identifies the
stations used for the interpolation to the particular grid
point for each climate parameter.

c. Interpolation by inverse-distance weighting

This method is based upon the assumption that the
influence of the nearby observed data on an interpolated
point solely depends on the inverse of the distance be-
tween the interpolated point and the data point. Let ĝj

be the interpolated point, Ti be the observed data at the
station r̂i, and T̂j be the estimated value of the quantity
T at the point ĝj. Then the inverse-distance-weighting
scheme is

21 MN j1 TiT̂ 5 , (4)O Oj 1 2d di51 i51i j i j

where dij 5 | r̂i 2 ĝj | is the distance between r̂i and ĝj,
and Mj is the total number of the stations ‘‘nearby’’ ĝj.
If the station r̂i is on the grid point ĝj, then

T̂ 5 T .j i (5)

The stations Ti (where i 5 1, 2, . . . , Mj) are chosen
according to the distance table for the grid ĝj. Station
r̂1 is the station with data that is nearest to the grid ĝj,
and station r̂2 is the second nearest station. The eight
nearest stations with dij # 200 km for temperature data
and with dij # 60 km for precipitation data are chosen
for interpolation. Here 60 and 200 km are approximate
spatial correlation length scales of precipitation and tem-
perature, respectively (Huff and Shipp 1969; Hansen
and Lebedeff 1987; more discussion in the next two
paragraphs). If less than eight stations are within the
specified distance, then only the stations present are used
for interpolation. For example, if six stations are within
200 km, then the interpolation for temperature uses only
these six stations. In the northern part of Alberta, there
may be no stations within the specified distance. Then,
the nearest-station-assignment method is used for in-
terpolation since the nearest-station-assignment method
does not specify a distance; hence only one station is
used. Figure 4 is the flow chart of the interpolation
algorithm.

Also because the station distribution in northern Al-
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FIG. 4. Flow chart of the interpolation procedures.

berta is very sparse, the expanded searching rectangle
for a polygon might not include any station. In this case,
the rectangle associated with the polygon should be ex-
tended so that it includes at least four stations with data.
No universally applicable rule states how many stations
should be chosen. Here, we choose four stations, fol-
lowing the method used by McGinn et al. (1992). For
temperature, because only the stations within 200-km
distance from the grid point are used for interpolation,
it can happen that for a given grid point inside the poly-
gon, there is only one or no station within the specified

distance; hence, only the nearest station is used for in-
terpolation, and consequently, the inverse-distance-
weighting interpolation is equivalent to the nearest-sta-
tion-assignment method. Thus, in the data-sparse areas,
the inverse-distance method reverts to the nearest-sta-
tion method. However, our inverse-distance method is
so flexible that inside the same polygon, some grid
points use several stations and some use only one sta-
tion, which is dynamically determined by the unique
circumstances of polygon shape and station locations.

Our inverse-distance method is somewhat different
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from the conventional ones described in most geosta-
tistics books or those commonly used in the literature
(Haining 1990; Isaaks and Srivastava 1989). The main
differences involve (i) the station-searching method and
(ii) the use of the nearest-station method if specified
length scales are exceeded in regions with low station
density. The spatial length scale is a measure of the
coherence of a climate field. If two points are nearby,
the correlation of their climate parameters is close to 1,
and, in general, the correlation decreases as the distance
between the two points increases. Usually, for a ho-
mogeneous field, when the correlation is equal to 0.4,
the distance is defined as the length scale of the field.
Although our highly inhomogeneous daily climate fields
do not obey this decaying rule, the length scales are still
a good reference for certain coherence. In this paper,
200 and 60 km are used as the length scales of tem-
perature and precipitation, respectively. These length
scales are approximate values and have large ranges of
uncertainties. From the study of Huff and Shipp (1969)
on the storm data in Illinois, 60 km is a reasonable value
for precipitation length scale. The choice of this value
should also consider the station density. If the station
density is very large, one may choose 40 km to reduce
the noise from distant stations. The length scale for
temperature is estimated from the study of Hansen and
Lebedeff (1987). They considered annual data. (Month-
ly data have similar results.) We obtained our length
value by dividing theirs, 1200 km, by 6 ø , as-Ï30
suming that the daily temperature anomalies are inde-
pendent from each other. The choice of the length scales
has also been validated by examining numerous Alberta
daily weather maps.

The use of faraway stations most likely introduces
more noise when the inhomogeneous teleconnection
patterns are not known. Our station searching method
inherently adjusts to the station density. Our searching
method and computational algorithm automatically ex-
clude the more distant stations when there are stations
closer to a grid point. Inclusion of a distant station’s
data, which do not represent the grid point, can only
further distort the interpolation result from the true field
and lead to oversmoothing.

The inverse-distance method (4) is a point estimation,
but we need the spatial value for each polygon. We used
the regular 10 km 3 10 km grid, as in the previous
section, to cover Alberta with at least one grid point in
each polygon. The inverse-distance method is used for each
grid point in a polygon. The climate parameter over the
polygon B is the arithmetic average of the T̂j for all the grid
points r̂j inside B (see Mackey et al. 1996). Hence,

NB1 ˆT 5 T . (6)OB jN j51B

If a station is inside the polygon, then some grid
points must be near the station, and, hence, this station’s
weight is very large. Thus, if the north–south and east–

west dimensions of a polygon are about the same, then
the climate values over the polygon are determined
mainly by the station(s) inside the polygon. However,
if a polygon is long and narrow, a station outside of but
near the polygon may also contribute to the polygon
data.

In the data-dense region, the field resulting from in-
verse-distance weighting is smoother than that from the
nearest-station assignment, but the inverse-distance
weighting might have oversmoothed the field and re-
duced extremes. The fields of the monthly precipitation
and daily mean temperature may be smooth enough,
and the inverse-distance weighting may yield reasonable
results. However, for daily precipitation, the interpola-
tion method often results in too many days with pre-
cipitation in a month, which raises the precipitation fre-
quency of a polygon. For example, if even one of the
polygon’s nearest stations recorded nonzero precipita-
tion for a given day, inverse-distance weighting will
yield a nonzero precipitation for the polygon, even
though all other nearest stations for this polygon may
actually have recorded zero precipitation for the day.
This can significantly increase the number of days with
precipitation. For example, the 1961–90 June climato-
logical mean of EDP727 has 24.5 days with precipita-
tion using the data from the inverse-distance method,
but the days with precipitation for EDP727 according
to our scheme are only 13.7. The latter is more reason-
able and very similar to the 1961–90 normal value from
actual recorded data at nearby stations. See the cross-
validation section below for more details.

The inverse-distance-square weighting, also called
the power-2 inverse-distance weighting, follows the
same computational procedures. Because of the higher
power of the inverse distance, the field is more localized.
Thus, if a polygon has stations inside, the climate pa-
rameter over the polygon is subject to little influence
from the station data outside of the polygon. As com-
pared with inverse-distance weighting, the inverse-dis-
tance-square weighting yields a less smooth climate
field. In fact, as the power-n of the inverse-distance
weighting approaches infinity, the power-n inverse-dis-
tance weighting becomes the nearest-station assignment.

d. Precipitation frequency and hybrid method

A polygon’s precipitation frequency involves the
polygon’s number of days with precipitation in a month,
the exact days of precipitation, and the amounts of pre-
cipitation (Osborn and Hulme 1997). Unfortunately, the
inverse-distance method cannot correctly determine the
precipitation frequency and yields too many days with
precipitation and too little precipitation per day for a
grid point, and hence for a polygon, as compared with
the observed data. The results from the inverse-distance
method have smaller variance both in space and time.
Since the rmse, mean absolute error (mae), and mean
biased error (mbe), defined by formulas (9)–(11) in sec-
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tion 4, are mean properties of differences between the
observed data and the interpolated data, it is not sur-
prising that the inverse-distance method yields more ac-
curate results than the nearest-station method when
these measures of error are used.

Because the results from the inverse-distance method
fit the monthly mean very well, the monthly total com-
puted from the method is accurate. Our cross-validation
for monthly totals for five stations supports this con-
clusion. Thus, the monthly totals for a grid point, and
hence a polygon, are computed from the inverse-dis-
tance method.

One way to estimate precipitation frequency is to have
stations everywhere in a polygon. Of course, doing so
is impossible and even then would not resolve the sit-
uation for larger polygons where inevitably some sta-
tions would record precipitation and others would not
on a given day. Therefore, we use the precipitation of
a polygon’s centroid to define whether the polygon had
precipitation on a given day. If the centroid has precip-
itation, then we define that the polygon also has pre-
cipitation that day. The centroid of a polygon is rarely
the location of a station. We use the centroid’s nearest
station as the best indicator for the centroid’s precipi-
tation, and hence the polygon’s precipitation and also
as the indicator of which days have precipitation. The
monthly total precipitation of a polygon is the sum of
the daily polygon precipitation determined by the in-
verse-distance method. The precipitation frequency is
computed from the nearest-station method. For this rea-
son, our method is called a ‘‘hybrid method.’’ For a
given day t, the precipitation over polygon is computed
from the following hybrid formula:

Pcpn (t)centerPcpn (t) 5 Pcpn (m) 3 , (7)edp iedp Pcpn (m)center

where Pcpniedp(m) is the monthly total precipitation of
the EDP and is computed by the inverse-distance meth-
od, Pcpncenter(m) is the monthly total precipitation of the
station(s) nearest to the centroid, and Pcpncenter(t) is the
precipitation of the station nearest to the centroid for
the given day t.

Please note that

M

Pcpn (t) 5 Pcpn (m). (8)O edp iedp
t51

Namely, the monthly total precipitation for a polygon
is not changed after using this precipitation frequency
formula (7). The hybrid formula (7) combines the in-
verse-distance and nearest-station methods. It is empir-
ical and data driven and requires cross-validation, which
is given in the next section.

4. Cross-validation and accuracy of interpolation

The most effective method now commonly used to
assess the error of climate data estimation is cross-val-

idation (Cressie 1993). The procedure compares esti-
mated data for a point with observed station data at that
point. Of course, the station data is withheld from the
estimation. The data from other stations are interpolated
to the station location. The statistics for the difference,
or errors, between the true data and the interpolated data
are used to evaluate the interpolation scheme’s accuracy.

To evaluate the interpolation accuracy, three types of
errors were computed.

1) Root-mean-square error:
1/2K1

2rmse 5 [X (t) 2 X (t)] , (9)O true estimate5 6K t51

where K is the number of days used for cross-vali-
dation studies, t is time with units of 1 day, and X
denotes a climate parameter at a cross-validation lo-
cation.

2) Mean absolute error:
K1

mae 5 |X (t) 2 X (t)|. (10)O true estimateK t51

3) Mean biased error:
K1

mbe 5 [X (t) 2 X (t)]. (11)O true estimateK t51

Since the polygon values are obtained from gridpoint
values, the cross-validation is performed for both grid
points and polygons. For gridpoint cross-validation, five
long-term stations distributed from south to north are
considered. They are, sorted from south to north, Leth-
bridge CDA (3033890; 498429N, 1128479W), Lacombe
CDA (3023720; 528289N, 1138459W), Edmonton INTL
A (3012205; 538189N, 1138359W), Beaverlodge CDA
(3070560; 558129N, 1198249W), and High Level A
(3073146; 588379N, 1178109W). The total number of
days for cross-validation is 13 514. Hence, the total
number of data entries for cross-validation is 67 570
minus the days without data at the cross-validation sta-
tions. Since day-to-day temperature and precipitation
anomalies are normally independent of each other, the
data for each day may be considered as an independent
sample.

The rmse, mae, and mbe results for Edmonton, La-
combe, Lethbridge, and Beaverlodge are comparable.
The magnitude of the errors for the five stations is shown
in Table 2.

For the inverse-distance method and for all stations
except High Level A, the rmse for Tmax ranges from
1.378 to 3.198C, Tmin from 1.798 to 3.228C, and Pcpn
from 1.75 to 2.84 mm. For the nearest-station-assign-
ment method again excluding High Level A, the rmse
for Tmax ranges from 1.978 to 2.918C, Tmin from 2.488 to
3.728C, and Pcpn from 2.39 to 3.30 mm.

The errors are small for the Lacombe, Edmonton, and
Beaverlodge stations, since these areas are flat and have
higher station density. The station density in the Leth-
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TABLE 2. Errors assessed by cross-validation for five long-term
stations from south to north (Units: Tmax and Tmin in degrees Celsius,
Pcpn in millimeters). (First number following section name is station
ID, second numbers are lat and lon in degrees and minutes with
symbols and spacing omitted.)

Tmax Tmin Pcpn

Lethbridge [3033890, (4942, 11247)]
Inverse-distance method rmse

mae
mbe

2.63
2.25
1.86

2.99
2.46
1.89

2.00
0.60

20.05
Nearest-station method rmse

mae
mbe

1.97
1.30

20.15

2.69
1.89

20.05

2.97
0.87

20.04

Lacombe [3023720, (5228, 11345)]
Inverse-distance method rmse

mae
mbe

1.37
0.96

20.11

1.79
1.38

20.53

1.75
0.64

20.16
Nearest-station method rmse

mae
mbe

2.10
1.40

20.25

2.48
1.83

20.66

2.39
0.78

20.10

Edmonton [3012205, (5318, 11335)]
Inverse-distance method rmse

mae
mbe

1.75
1.10

20.07

2.16
1.57

20.67

2.36
0.81

20.03
Nearest-station method rmse

mae
mbe

2.10
1.40

20.15

2.83
2.10

20.79

3.30
1.08
0.02

Beaverlodge [3070560, (5512, 11924)]
Inverse-distance method rmse

mae
mbe

2.09
1.50
0.63

2.63
1.93
1.01

1.95
0.76

20.15
Nearest-station method rmse

mae
mbe

2.91
2.13
0.84

3.72
2.71
1.04

2.48
0.88

20.11

High Level A [3073146, (5837, 11710)]
Inverse-distance method rmse

mae
mbe

3.19
2.21
0.23

3.22
2.41

21.12

2.84
0.74

20.20
Nearest-station method rmse

mae
mbe

5.30
4.05
1.88

4.75
3.32

20.24

3.31
1.15
0.21

bridge area is also higher, but the topographic influence
makes the errors slightly higher than Lacombe and Ed-
monton. The errors are larger for the northernmost sta-
tion, High Level A. The station density in this area is
much lower. The mean station distance, defined by the
sum of the mutual distances between any two points
divided by the total number of distances, is about 105
km. Also the data stream of this station is short, less
than 10 yr as compared with others of 37 yr. Thus, the
cross-validation errors for this station are not considered
representative, and the large errors of the nearest-sta-
tion-assignment method for this station are not included
in the error summary of the above paragraph.

The rmse, mae, and mbe above are considered mea-
sures of the goodness of fit to mean conditions. Our
computational results show that the error for Tmax is
usually smaller than that for Tmin. The nearest-station-
assignment method usually produces rmse and mae
around 20%–30% larger than the inverse-distance meth-

od. This result is expected, since the inverse-distance
method yields a smooth field and the true daily weather
distributes randomly on the positive or negative side of
the smooth field. Thus, the field generated by the in-
verse-distance method has a smaller variance than the
true field.

We also checked other algorithms such as the inverse-
distance-square method, quadrant search, and different
length scales for precipitation, and found the following.

1) The inverse-distance-square method consistently
yielded a larger error than the inverse-distance meth-
od.

2) The errors of the quadrant inverse-distance method
were slightly but consistently larger than those from
the inverse-distance method. The quadrant searched
required at least a station in each quadrant. If a quad-
rant did not have a station within the distance range
(200 km for temperature and 60 km for precipita-
tion), then the nearest-station-assignment method
was applied to the nearest station in the quadrant.

3) For precipitation, the inverse-distance method yield-
ed smaller errors than the nearest-station method, and
100- and 60-km length scales did not make much
difference, with 100 km giving a slightly smaller
error for the High Level A station. Here, the two
distances, 60 and 100 km, were considered to test
the sensitivity of the results to the length scale. These
two distances were combined with the four methods:
nearest-station assignment, inverse distance, inverse-
distance square, and quadrant search. Hence, seven,
not eight, cases were evaluated since the nearest-
station method is irrelevant to the length scale in
computing algorithm.

The seven experiments were (temp is temperature)

a) nearest-station method (temp: $50 km, Pcpn: $5
km),

b) inverse-distance method (temp: 50–200 km, Pcpn:
5–60 km),

c) inverse-distance method (temp: 50–200 km, Pcpn:
5–100 km),

d) inverse-distance-square method (temp: 50–200
km, Pcpn: 5–60 km),

e) inverse-distance-square method (temp: 50–200
km, Pcpn: 5–100 km),

f) inverse-distance-quadrant method (temp: 50–200
km, Pcpn: 5–60 km), and

g) inverse-distance-quadrant method (temp: 50–200
km, Pcpn: 5–100 km).

The advanced, optimized interpolation methods, such
as interpolation by EOF, cannot be used here either,
because of nonstationarity (Shen et al. 1994; Smith et
al. 1998).

In order for the cross-validation errors to be repre-
sentative, the cross-validation should not include sta-
tions too close to the cross-validation site, since not all
the grid points have stations nearby. Thus, in the above,
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TABLE 3. Sample variances of the data from cross-validation stations (Units: 8C2 for Tmax and Tmin, mm2 for Pcpn).

Station name

Observed data

Tmax Tmin Pcpn

Inverse-distance

Tmax Tmin Pcpn

Nearest-station

Tmax Tmin Pcpn

Edmonton Intl A
Lacombe CDA
Lethbridge CDA
Beaverlodge CDA
High Level A

7.14
7.24
7.65
7.45
7.08

6.37
6.10
6.71
6.68
6.77

3.96
3.76
3.79
3.97
3.31

7.06
7.20
7.06
7.35
7.16

6.17
5.91
6.17
6.85
6.74

3.43
3.53
3.29
3.54
3.82

7.08
7.42
7.70
7.84
7.70

6.48
6.22
6.49
7.61
7.35

3.94
4.05
3.79
4.05
3.57

TABLE 4. Number of days with precipitation per month at
Lacombe Station [3023720 (528289N, 1138459W)].

Month Observed Inverse-distance Nearest-station

1
2
3
4
5
6
7
8
9

10
11
12

9.30
7.13
6.83
6.87

10.33
13.53
14.20
12.47
11.00

5.80
7.03
7.60

16.13
12.33
13.90
12.80
16.87
20.43
21.23
18.97
16.73
12.00
12.97
14.50

8.92
7.07
6.69
5.68

10.19
13.92
14.22
12.61
11.31

5.31
6.33
7.62

TABLE 5. Precipitation variances of the inverse-distance results and
revised results over the cross-validation polygons (Units: mm2).

Polygon Revised Inverse

EDP727
EDP737
EDP793
EDP598
EDP586
SLC433
SLC518
SLC644
SLC15
SLC723

3.82
4.10
3.65
4.09
3.63
4.04
3.98
3.67
4.06
3.63

3.25
3.41
3.18
3.49
2.82
3.41
3.50
3.22
3.48
3.24

the 50 km for temperature means that the stations less
than 50 km away from the cross-validation site are not
used for interpolation. This value for precipitation is 5
km, since the length scale for precipitation is much
smaller.

Three types of errors, rmse, mae, and mbe, were cal-
culated. The results of the above experiments (a) and
(b) are shown in Table 2. They indicated that the inverse-
distance method appears to generate more accurate re-
sults. The inverse-distance method oversmoothed the
interpolated fields, particularly the precipitation field.
We computed the sample variances for the data of the
five cross-validation stations, and the variance results
are shown in Table 3. Here, the variances are computed
from the daily anomaly data. For each day in a year,
the 1961–90 mean is computed. The anomalies for a
station are with respect to this mean. The variance of
the station is computed according to these anomaly data
for 1961–90. Table 3 indicates that the inverse-distance
method reduces the sample variance. For temperature,
the reduction is small. The average of the five stations
is less than 5%. For precipitation, the reduction is over
10%. (The results from the High Level A station were
not representative and hence excluded in the above dis-
cussion because of the station’s short record, namely
1072 days during the 30-yr cross-validation period,
1961–90.)

The variance for the precipitation resulting from the
nearest-station method is almost the same as that of the
observed data. Thus, considering the need to preserve
the second moment, that is, variance, the nearest-station
method was selected as the preferred interpolation meth-

od. This is the reason why the precipitation frequency
was computed by the hybrid formula (7) in section 3d.

Let us consider the number of precipitation days per
month for the five cross-validation stations. For each
cross-validation, three datasets exist: the observed data
at the station, the interpolated data from the inverse-
distance method, and the interpolated data from the
nearest-station method. The cross-validation results for
the Lacombe (3023720) station are shown in Table 4.
The number of days with precipitation from the ob-
served data and that from the nearest-station interpo-
lation are about the same, while that from the inverse-
distance interpolation is too large by about 50%–100%.
Such a big percentage is unexpected, although it is not
surprising that the inverse-distance method yields too
many precipitation days. Cross-validation results from
other stations support the same conclusion.

We also validated the hybrid method on the five EDP
and five SLC polygons in which the five cross-validation
stations are located. The inverse-distance method yield-
ed a result of daily precipitation and formula (7) revised
the result. The revised result had a larger variance than
the one generated by the inverse-distance method. Table
5 shows the variance of the precipitation for the five
polygons, before and after the revision. The variance of
the revised precipitation is about 10%–20% higher than
that of the inverse-distance results, which is the size of
increase we intended to achieve. The revision does not
change the monthly total precipitation, but it changes
the temporal distribution and hence the amount of daily
precipitation. The revised precipitation overcomes the
problem of the oversmoothed inverse-distance results,
which have too many precipitation days and too little
precipitation each day. Table 6 shows the precipitation
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TABLE 6. Number of precipitation days on two polygons computed
from inverse-distance and hybrid methods.

Month

SLC518

Inverse-
distance Hybrid

EDP793

Inverse-
distance Hybrid

1
2
3
4
5
6
7
8
9

10
11
12

18.03
14.03
15.37
14.23
18.57
21.93
23.10
21.00
18.10
13.20
14.57
16.63

8.60
6.83
6.19
5.93
9.33

12.67
13.40
11.70

9.83
4.87
6.57
7.20

19.03
15.43
18.53
18.77
20.43
21.27
19.90
19.13
16.63
14.03
14.97
18.70

7.73
5.73
7.40
6.93
9.10
9.43
7.37
7.43
7.07
4.63
5.47
7.83

FIG. 5. Precipitation as interpolated by the hybrid method for a
major storm on 30 Jun 1961.

days per month in two of the 10 cross-validation poly-
gons: SLC518 and EDP793. The precipitation frequency
results produced by the hybrid method for polygons are
comparable to those for cross-validation stations (Table
4).

The hybrid method can also preserve the spatial lo-
calization of precipitation, while the inverse-distance
method and other smoothing methods spread precipi-
tation domains. The localization is particularly impor-
tant in summer and significant for the climate input of
soil quality models, since water erosion of soil is mainly
due to extreme storm events. Figures 5 and 6 show
precipitation fields in millimeters for a major storm and
for scattered small storms on two given days interpo-
lated by the hybrid method.

The remaining cross-validation question is the good-
ness of fit for polygons with respect to mean conditions.
Since the true value of a polygon average can never be
measured, cross-validation experiments cannot be used
to directly assess the errors of the polygon data. A rough
estimate of the data error of a polygon is given by the
above gridpoint mean square error divided by ,Ïn
where n is the spatial degrees of freedom of the climate
field over a polygon. This is 1.0 for a small polygon,
2.0 for a large polygon of two independent grid points,
and 3.0 for an even larger polygon of three independent
grid points. However, this is only a rough estimate and
knowing exactly how many independent grid points are
within a polygon is not a trivial task. It can be safely
claimed that the upper limit of the polygon data error
is 1.88–3.28C for temperature and 1.8–2.4 mm for pre-
cipitation, and the lower limit is one-half of these
amounts.

5. Conclusions and discussion

We have described a method that interpolates daily
station data onto the 894 SLC polygons and 150 EDP
in the province of Alberta, Canada. The interpolated
daily data fit not only the climate mean but also climate

variability, in particular, the number of days with pre-
cipitation per month. Hence, the result is a complete
37-yr set of continuous daily data, which provides re-
alistic climate input for use in soil quality models. The
interpolated results, the first ever provided for Alberta
at this fine scale for the entire province, preserve the
variability of the Alberta daily climate data, specifically
the number of days with precipitation. Our procedure
of interpolating station data onto polygons involves in-
terpolating the station data onto a dense network of grid
points and then averaging the gridpoint values inside
polygons. Special attention was paid to precipitation
because of its short spatial correlation length scale and
large variability. A new hybrid method combining in-
verse-distance weight and nearest-station assignment
was developed for interpolating the precipitation data.
The polygon’s total monthly precipitation was obtained
by the inverse-distance-weight method, while the num-
ber of days with precipitation and what days had pre-
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FIG. 6. Precipitation as interpolated by the hybrid method for small
scattered storms on 26 Jul 1961.

cipitation in the month were determined by the nearest-
station-assignment method. This hybrid method re-
solves a long-outstanding problem in precipitation in-
terpolation: too many days with precipitation and too
little precipitation per day.

Maximum and minimum temperature have long spa-
tial correlation length scale and are recorded at almost
all stations. Although interpolation provides good re-
sults, it is important to avoid a method that oversmooths
the field. It is equally important that one not use a meth-
od, such as nearest-station assignment or inverse-dis-
tance square, which strongly localizes the temperature
field so that the interpolated fields are discontinuous or
bumpy. We have chosen to use the inverse-distance-
weight method, which well maintains the continuity and
variability of the field.

Soil quality models also require the interpolated data
for relative humidity, incoming radiation, wind speed,

and wind direction. However, there are very few stations
observing these parameters. Within Alberta and during
the period of 1 January 1961–31 December 1990, there
were only 26 stations for relative humidity, 45 stations
for wind, and 5 stations for incoming radiation.

Relative humidity and incoming radiation have strong
dependence on clouds and hence are highly localized
or discontinuous in space. After testing the inverse-dis-
tance-weight method, we have found that the results of
the nearest-station-assignment method better reflect the
true climate conditions over polygons.

The wind field can be tricky and strongly depends on
orographic properties. In a large area, the mean wind
direction of a day may be nearly homogeneous, but two
points nearby can have completely different directions
because of geographic characteristics. In the AES da-
taset, wind speed, and wind direction have few obser-
vation stations. We also used the nearest-station-assign-
ment method for the wind field in order to maintain both
its temporal and spatial variability. The interpolation
scheme is exactly the same as that of relative humidity
and radiation and its details have been omitted in this
paper. It is understood that dynamic properties should
be incorporated to construct a more realistic wind field,
which is beyond the scope of this paper.

It is worth noting that some existing interpolation
methods do not make full use of all the observed data.
Many interpolation methods require that the data stream
from a station be complete. If there are missing data, a
temporal interpolation is applied to estimate the missing
data. Because of large daily variability of climate pa-
rameters, the temporal interpolation can introduce errors
into the climate data. Thus, if a station has a very short
record, then this station must be excluded from inter-
polation. Our computing algorithm does not require this
temporal interpolation and uses all the daily observed
climate data, even using a very short record such as
summer-only records, as long as the data have passed
the quality control process.

Still other spatial interpolation methods are also avail-
able, such as ordinary kriging, block kriging, the em-
pirical orthogonal function approach, and improved
kriging, but they require that the climate process be
stationary or close to stationary. The monthly or annual
means for climate parameters can be approximately sta-
tionary, but not the daily values. Some methods such
as ordinary kriging (Hudson and Wackernagel 1994;
Isaaks and Srivastava 1989) cannot even reliably ac-
count for spatial inhomogeneity. The daily weather has
large variances and is not a stationary process. It does
not have a stable variogram. An assumed variogram,
such as a Gaussian type, is certainly far away from truth.
Consequently, the kriging results can be very unreal-
istic. This conclusion agrees with that by Daly et al.
(1994). Of course, a more careful selection and fitting
of the variogram should improve the result. However,
we are still not optimistic about ordinary kriging’s ap-
plication to daily weather data interpolation. For ex-
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ample, Higgins et al. (1996), after a test of kriging and
other methods, used the inverse-distance method to in-
terpolate U.S. hourly precipitation data.

Any method that takes account of elevation may have
great potential in application (Daly et al. 1994; De-
Gaetano et al. 1993; Dodson and Marks 1997; Hutch-
inson 1998b). Since the major aim of our project was
to develop a dataset for soil quality models in agricul-
tural applications in Alberta, the mountain areas were
not considered, and hence elevation-related methods
were not explored in this study. Nevertheless, these
methods have potential to improve upon the work re-
ported here. One possibility of improvement is the com-
bination of thin-plate-spline smoothing with nearest-sta-
tion assignment, similar to that done in section 3d. Sup-
pose that thin-plate-spline smoothing can reliably in-
terpolate the mean condition of a climate field. The
nearest-station assignment can raise the variance of the
result from the thin-plate-spline smoothing and reduce
the number of precipitation days in a month. This is
deferred to future investigation.

Our procedure interpolated the scattered station data
onto a regular grid which could easily be latitude–lon-
gitude grid points and suit many applications. Similar
to the 10 km 3 10 km resolution, our method can pro-
vide a dataset with 0.18 3 0.18 latitude–longitude res-
olution. One application is a high-resolution version of
Agroclimatic Atlas of Alberta (Dzikowski and Heywood
1990). With the gridpoint values, the atlas can be easily
and accurately generated by software such as the Geo-
graphic Information Systems that are used widely in
geography and geology, or the Grid Analysis and Dis-
play Systems commonly used by meteorologists. Both
software require data on regular latitude–longitude grid
points. Another application is to use the data for a long-
term statistical forecasting. The canonical correlation
analysis or singular value decomposition method can
use this grid data for a seasonal, 6-month, or 12-month
forecasting. These projects will again be deferred to
future studies.

The format of the climatic data input for soil quality
models is referred to in Shen et al. (2000). Other basic
daily climate parameters needed for the models, such
as degree-days, are derived from the seven climate pa-
rameters: maximum temperature, minimum tempera-
ture, precipitation, relative humidity, incoming solar ra-
diation, wind speed, and wind direction.
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